OmROn

Safety Relay Unit

Ideal for Safety Door and Emergency

 Stop Switch Circuits for Machines in European Countries■ Two-pole slim models that are only 22.5 mm wide, three-pole models that are only 68 mm wide, and five-pole models that are only 91 mm wide are available.

- OFF-delay models are available
- Incorporates LED indicators for monitoring built-in relays.
- Finger-protection construction.

■ Both DIN track mounting and screw mounting possible (two-pole models)

- Conforms to EN60204-1 (IEC204-1), EN954-1, and approved by BIA.
Note: Be sure to refer to the Precautions on pagetf.

Ordering Information

Basic Models

Number of poles	Main contact form	Number of input channels	Model	Rated voltage
2	DPST-NO	1 channel	G9S-2001	24 VDC
		2 channels	G9S-2002	
3 (see note)	3PST-NO	1 channel or 2 channels possible	G9S-301	24 VDC
				100 VAC
				200 VAC
				240 VAC
5 (see note)	5PST-NO		G9S-501	24 VDC
				100 VAC
				200 VAC
				240 VAC

Note: Auxiliary contact is SPST-NC.

OFF-delay Models

Number of poles	Main contact form	OFF-delay form	Number of input channels	Model	OFF-delay time	Rated voltage
3		3PST-NO	DPST-NO	1 channel or 2 channels possible	G9S-321-T01	1 s

Note: Each model has an SPST-NC auxiliary contact.

Model Number Legend:

1. Contact configuration (safety output)

2:	DPST-ND
3:	3PST-NO
$5:$	5PST-NO

2. Contact configuration (OFF-delay output)

0: None
2: DPST-ND
3. Contact configuration (auxiliary output)

0: None
1: SPST-NC
4. Input configuration

None: 1-channel or 2-channel input possible
1: 1-channel input
2: 2-channel input
5. OFF-delay time

None: No OFF-delay
T01: 1 second
T10: 10 seconds
T30: 30 seconds

Specifications

- Ratings

Controller Block

Model	Rated voltage	Rated current	Rated power consumption
$\begin{aligned} & \text { G9S-2001 } \\ & \text { G9S-2002 } \end{aligned}$	24 VDC	$66 \mathrm{~mA} \pm 20 \%$	Approx. 1.6 W
G9S-301	24 VDC	$62.5 \mathrm{~mA} \pm 20 \%$	Approx. 1.5 W
	100 VAC	$30 \mathrm{~mA} \pm 20 \%$	$\begin{aligned} & \text { Approx. } 3 \mathrm{VA} \\ & (60 \mathrm{~Hz}) \end{aligned}$
	200 VAC	$15 \mathrm{~mA} \pm 20 \%$	
	240 VAC	$12.5 \mathrm{~mA} \pm 20 \%$	
G9S-501	24 VDC	$127 \mathrm{~mA} \pm 20 \%$	Approx. 3 W
	100 VAC	$55 \mathrm{~mA} \pm 20 \%$	Approx. 5.5 VA (60 Hz)
	200 VAC	$27.5 \mathrm{~mA} \pm 20 \%$	
	240 VAC	$22.9 \mathrm{~mA} \pm 20 \%$	
G9S-321-T \square	24 VDC	$150 \mathrm{~mA} \pm 20 \%$	Approx. 3.6 W
	100 VAC	$61 \mathrm{~mA} \pm 20 \%$	Approx. 6.1 VA(60 Hz)
	200 VAC	$30.5 \mathrm{~mA} \pm 20 \%$	
	240 VAC	$25.4 \mathrm{~mA} \pm 20 \%$	

Note: The above ratings are at an ambient temperature of $23^{\circ} \mathrm{C}$.

Contact

Item	$\begin{gathered} \text { G9S-301 } \\ \text { G9S-501 } \\ \text { G9S-321-T } \end{gathered}$	$\begin{aligned} & \text { G9S-2001 } \\ & \text { G9S-2002 } \end{aligned}$
Rated load	3 A at 240 VAC; (see note) $\cos \phi=0.4$	$\begin{aligned} & 5 \mathrm{~A} \text { at } 240 \mathrm{VAC} ; \\ & \cos \phi=0.4 \end{aligned}$
AC15 (IEC-947-5-1/ Table 4)	3 A at $240 \mathrm{VAC} ; \cos \phi=0.3$; 6,050 operations	
$\begin{aligned} & \text { DC13 } \\ & \text { (IEC-947-5-1/ } \\ & \text { Table 4) } \end{aligned}$	1 A at 24 VDC ; L/R=100 ms; 6,050 operations	
Rated carry current	5 A	
Max. switching voltage	250 VAC, 24 VDC	
Max. switching capacity	$\begin{aligned} & \text { AC: } 1,250 \mathrm{VA} ; \\ & \text { DC: } 120 \mathrm{~W} \end{aligned}$	
Min. permissible load	50 mA at 24 VDC (operating frequency: 60 operations/min.)	

Note: If the load is 5 A at 240 VAC, the service life will be 40,000 times.

- Characteristics

Item		$\begin{aligned} & \text { G9S-2001 } \\ & \text { G9S-2002 } \end{aligned}$	G9S-301	G9S-501	G9S-321-T \square
Input voltage/frequency		$\begin{aligned} & 24 \mathrm{VDC} \pm 10 \%, \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$24 \mathrm{VDC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ $100 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ $200 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ $240 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$		
Fuse protection		---	0.4 A		
Contact form of safety circuit		DPST-NO	3PST-NO	5PST-NO	3PST-NO
Contact form of auxiliary circuit		---	SPST-NC	SPST-NC	SPST-NC
Contact form of safety OFF-delay circuit		---			DPST-NO
Contact resistance		$200 \mathrm{~m} \Omega$	$300 \mathrm{~m} \Omega$ max. (measurement conditions: $5 \mathrm{VDC}, 10 \mathrm{~mA}$, voltage drops.)		
Operate time	(Rated voltage operation, does not include bounce time)	50 ms	300 ms max.		300 ms
Release time		50 ms	100 ms max .		100 ms ; OFF-delay: $1 \mathrm{~s}, 10$ s, 30 s
Max. switching frequency	Mechanical	1,800 operations/hr			
	Rated load	1,800 operations/hr			
Insulation resistance (at 500 VDC)		$100 \mathrm{M} \Omega$ min. between control circuit and the safety and auxiliary circuits, between the safety circuits and auxiliary circuits, and between safety circuits			
Rated insulation voltage P.D. 3 (outside), P.D. 2 (inside) (IEC664-1, DIN VDE 0110/'89)		250 V			
Rated impulse withstand voltage Overvoltage category 3 (IEC664-1, DIN VDE 0110/'89)		4 kV			
Dielectric strength		2,500 VAC ($50 / 60 \mathrm{~Hz}$ for 1 min .) between control circuit and the safety and auxiliary circuits, between the safety circuits and auxiliary circuits, and between safety circuits			
Vibration resistance (IEC68-2-6)	Destruction	10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ double amplitude			
	Malfunction	10 to $55 \mathrm{~Hz}, 0.5-\mathrm{mm}$ double amplitude			
Shock resistance (IEC68-2-27)	Destruction	$300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30G) for 11 ms			
	Malfunction	$50 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 5G) for 11 ms			
Minimum applicable load (P standard reference value)		$24 \mathrm{VDC}, 50 \mathrm{~mA}$			
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Storage: $\quad-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$			
Ambient humidity		Operating: 38% to 85% RH Storage: 38% to 85% RH			
Degree of protection (IEC529)	Terminals	IP20			
	Enclosure	IP40			
Terminal tightening torque		$10 \mathrm{kgf} \cdot \mathrm{cm}(0.98 \mathrm{~N} \cdot \mathrm{~m})$			
Weight (see note)		Approx. 180 g	Approx. 365 g	Approx. 550 g	Approx. 580 g
Approved standards		UL508, CSA22.2 No. 14, EN954-1, EN60204-1			
EMC		EMI: EN55011 group 1 class A EMS: EN50082-2			

Note: These weights are for DC models. AC models are 200 g heavier.

Life Expectancy

Mechanical life	$1,000,000$ operations min. with a switching frequency of approx. 1,800 operations $/ \mathrm{h}$
Electrical life	100,000 operations min. at the rated load with a switching frequency of approx. 1,800 operations $/ \mathrm{h}$

Life Expectancy Curve

($240 \mathrm{VAC}, \cos \phi=0.4, \cos \phi=1$)

Application Examples

G9S-2001 with Single-channel Manual-reset Emergency Stop Switch Input

G9S-2001 with Single-channel Auto-reset Limit Switch Input

G9S-2002 with 2-channel Manual-reset Emergency Stop Switch Input

G9S-2002 with 2-channel Auto-reset Limit Switch Input

G9S-301 (24 VDC) with 2-channel Limit Switch Input

G9S-501 (AC Model) with 2-channel Limit Switch Input

G9S-321-T \square (24 VDC) with 2-channel Limit Switch Input

Timing Chart

S1:
S2:

S3: Starter switch KM1 and KM2: Magnet Contactor 3-phase motor

Timing Chart

S1: Limit switch
S2:
Safety Limit Switch
with positive opening mechanism
(D4D and D4B)
S3:
Starter switch
KM1 and KM2: Magnet Contactor
M:

Magnet Contactor
3-phase motor

G9S-301 (24 VDC) with 2-channel Emergency Stop Switch Input

Emergency stop switch Starter switch Magnet Contactor G3J Solid-state Contactor 3-phase motor

G9S-501 (AC) with Single-channel Emergency Stop Switch Input

Timing Chart

(NO)

S1: Emergency stop switch
Starter switch
Magnet Contactor
3-phase motor

G9S-321-T \square (24 VDC) with Single-channel Limit Switch Input

Timing Chart

S1: Safety Limit Switch
with positive opening mechanism
(D4D and D4B)
S2: \quad Starter switch
KM1 and KM2: Magnet Contactor
M:

G9S-301 (24 VDC) with 2-channel Auto-reset Limit Switch Input

Timing Chart

(NO)

S1: Limit switch
S2: Safety Limit Switch
with positive opening mechanism (D4D and D4B)
KM1 and KM2: Magnet Contactor
M:
3 -phase motor

Dimensions

Note: All units are in millimeters unless otherwise indicated.
G9S-2001 G9S-2002

Note: This is an average value.

G9S-301

G9S-321-T \square
G9S-501

Installation

■ Internal Connections

G9S-2001

G9S-321-T \square (24 VDC)

G9S-2002

G9S-321-T \square (AC Model)

Precautions

Wiring

Be sure to turn off the G9S before wiring the G9S. Do not touch the terminals of the G9S while the power is turned on, because the terminals are charged and may cause an electric shock.
Use the following to wire the G9S.
Strand wire: 0.75 to $1.5 \mathrm{~mm}^{2}$
Steel wire: 1.0 to $1.5 \mathrm{~mm}^{2}$
Make sure that each screw is tightened to a torque of 0.78 to 1.18 $\mathrm{N} \cdot \mathrm{m}$ (8 to $12 \mathrm{kgf} \bullet \mathrm{cm}$), or the G9S may malfunction or generate heat.
External inputs connected to T11 and T12 or T21 and T22 of the G9S-301 must be no-voltage contact inputs.
$P E$ is a ground terminal.
When a machine is grounded at the positive, the PE terminal should not be grounded.

Mounting Multiple Units

If the output current is 3 A or more, make sure that there is a minimum distance of 50 mm each between all adjacent G9S Units. (24-VDC models do not require this spacing.)

Fuse Replacement (Three- and Five-pole Models)

The power input circuit of the G9S includes a fuse to protect the G9S from damage that may be caused by short-circuiting. The fuse is mounted to the side panel. Use the following type of fuse as a replacement.
Littel Fuse 218.4 (rated current 0.4 A), IEC127 approval.
Use a flat-blade screwdriver to remove the fuse cover.
Be sure to turn off the G9S before replacing the fuse.

Applicable Safety Category (EN954-1)

All G9S-series Relays fall under Safety Category 4 of EN954-1 except the G9S-32I-T and G9S-2001. The G9S-32I-T has an OFFdelay output block falling under Safety Category 3 and G9S-2001 falls under Safety Category 1.
The above is provided according to circuit examples presented by OMRON. Therefore, the above may not apply to all operating environments.
The applicable safety category is determined from the whole safety control system. Make sure that the whole safety control system meets EN954-1 requirements.
Wire the G9S-2001 or G9S-2002 for auto-reset. If either one of them is connected to a manual-reset switch, EN954-1 requirements will not apply.

Safety Category 4 of EN954-1

Wire the G9S-2001 or G9S-2002 for auto-reset. If either one of them is connected to a manual-reset switch, EN954-1 requirements will not apply.
Apply 2-channel external input to the T11 and T12 terminals and T21 and T22 terminals through switches each incorporating a forceseparation mechanism. If limit switches are used, make sure that at least one of them incorporates a force-separation mechanism.
Refer to Application Examples and input a signal for the normallyclosed contact of the contactor (i.e., input to X1 of the G9S-301, X2 of the G9S-501, or X2 of the G9S-321-T).
Be sure to ground the PE terminal. If the relay is operating with DC, the power supply may be grounded instead.

