1/32 DIN Digital Panel Meter

Compact and Intelligent Digital Panel Meter

- A single Panel Meter covering a wide range of applications.
3 main applicable functions:
- Process meter (DC voltage/current input).
- RPM processor/tachometer (frequency input).

- Digital data display for PC/PLC (RS-485 communications).
- Easy configuration
- Multi-range analog input: applicable for all standard analog signals. 6 input ranges available: 4 to $20 \mathrm{~mA} / 0$ to $20 \mathrm{~mA}, 1$ to $5 \mathrm{VDC} / 0$ to $5 \mathrm{VDC}, \pm 5 \mathrm{VDC}, \pm 10 \mathrm{VDC}$.
- 5 KHz max. input-pulse frequency range.
- Scaling in a wide range of engineering units.
- Programmable output operation action, decimal point position setting, teaching function for input range, leading zero suppression, average processing.
- Advanced and compact design
- Very compact $1 / 32$ DIN housing: 48 (W) x 24 (H) 83 (D).
- 5-digit display with programmable display color in red or green.
- Good visibility: High contrast backlit LCD display.
- High protection against water and dust: NEMA4X/IP66 front panel.
- Selectable outputs: 2 relay outputs, 3 transistor outputs, RS-485, and combinations of these.
- High accuracy: $\pm 0.1 \%$ full scale.
- Easy to configure through the front panel or via RS-485.
- EN/IEC conformity with CE marking and UL/CSA approval.

Ordering Information

Input type	Supply voltage			Communications	
		No communications	RS-485		
DC voltage/current, NPN	24 VDC	Dual relays (SPST-NO)	K3GN-NDC 24 VDC	K3GN-NDC-FLK 24 VDC	
		Three NPN open collector	K3GN-NDT1 24 VDC	K3GN-NDT1-FLK 24 VDC	
	DC voltage/current, PNP	Dual relays (SPST-NO)	K3GN-PDC 24 VDC	K3GN-PDC-FLK 24 VDC	
		Three PNP open collector	K3GN-PDT2 24 VDC	K3GN-PDT2-FLK 24 VDC	

Model Number Legend:

1. Input Type

ND: DC voltage/current, NPN
PD: DC voltage/current, PNP
2. Output Type

C: 2 relay contact outputs (SPST-NO)
T1: 3 transistor outputs (NPN open collector)
T2: 3 transistor outputs (PNP open collector)
3. Communications Output Type

None: Communications not supported
FLK: RS-485

Specifications

- Ratings

Supply voltage	24 VDC
Operating voltage range	85\% to 110% of the rated supply voltage
Power consumption (see note)	2.5 W max. (at max. DC load with all indicators lit)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between external terminal and case. Insulation provided between inputs, outputs, and power supply.
Dielectric withstand voltage	1,000 VAC for 1 min between external terminal and case. Insulation provided between inputs, outputs, and power supply.
Noise immunity	$\pm 480 \mathrm{~V}$ on power supply terminals in normal mode, $\pm 1,500 \mathrm{~V}$ in common mode, $\pm 1 \mu \mathrm{~s}$, or 100 ns for square-wave noise with 1 ns
Vibration resistance	Malfunction: 10 to $55 \mathrm{~Hz}, 10 \mathrm{~min}$ each in X, Y, and Z directions; acceleration: $9.8 \mathrm{~m} / \mathrm{s}^{2}$ Destruction: 10 to $55 \mathrm{~Hz}, 30 \mathrm{~min}$ each in X, Y, and Z directions; acceleration: $19.6 \mathrm{~m} / \mathrm{s}^{2}$
Shock resistance	Malfunction: Models with transistor outputs: $196 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in X, Y, and Z directions Models with relay contact outputs: $98 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in X, Y, and Z directions Destruction: $294 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in X, Y, and Z directions
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no condensation or icing) Storage: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no condensation or icing)
Ambient humidity	Operating: 25\% to 85\% (with no condensation)
Ambient atmosphere	Must be free of corrosive gas
EMC	
Approved standards	UL508, CSA22.2; conforms to EN50081-2, EN50082-2, EN61010-1 (IEC61010-1); conforms to VDE106/part 100 (Finger Protection) when the terminal cover is mounted.
Weight	Approx. 100 g

Note: A control power supply capacity greater than the rated capacity is required when the Digital Panel Meter is turned ON. Do not forget to take this into consideration when using several Digital Panel Meters. When power is supplied, all indicators will light and outputs will be OFF. When using startup compensation time operation, the display will read "nחañ" and all outputs will be OFF.

Input/Output Ratings

Relay Contact Output
(Incorporating G6K Relays)

Item	Resistive load (cos $\phi=\mathbf{1}$)
Rated load	1 A at 30 VDC
Rated carry current	1 A max. (at COM terminal)
Max. contact voltage	60 VDC
Max. contact current	1 A (at COM terminal)
Max. switching capacity	30 VA
Min. permissible load (P level, reference value)	$10 \mathrm{mV}, 10 \mu \mathrm{~A}$
Mechanical life	$50,000,000$ times min. (at a switching frequency of 36,000 times/hr)
Electrical life (at an ambient temperature of $\mathbf{2 3}^{\circ} \mathbf{C}$)	100,000 times min. (at the rated load with a switching frequency of 1,800 times/hr)

Transistor Output

Rated load voltage	24 VDC
Max. load current	50 mA
Leakage current	$100 \mu \mathrm{~A}$ max.

Communications

Item			
Transmission method	2-wire, half-duplex		
Synchronization method	Start-stop synchronization		
Baud rate	$1,200 / 2,400 / 4,800 / 9,600 / 19,200 \mathrm{bps}$		
Transmission code	ASCII		
Communications	Reading/Writing to the K3GN		Read/write set values, read/write scaling values, enable/disable the writing of data through
:---			
communications, forced-zero control, and other data.	,		

Refer to N102 Operation Manual for more details.

- Measuring Ranges

Process Voltage/Current Inputs

Input	Measuring range	Measuring accuracy	Input impedance	Displayable range
DC voltage	$\begin{aligned} & 1.000 \text { to } 5.000 \mathrm{~V} / \\ & 0.000 \text { to } 5.000 \mathrm{~V} \end{aligned}$	$\pm 0.1 \%$ FS ± 1 digit max. (at $23 \pm 3^{\circ} \mathrm{C}$)	$1 \mathrm{M} \Omega \mathrm{min}$.	$\begin{aligned} & \hline-19999 \text { to } 99999 \\ & \text { (with scaling function) } \end{aligned}$
	-5.000 to 5.000 V	$\pm 0.1 \%$ FS ± 1 digit max. (at $23 \pm 5^{\circ} \mathrm{C}$)		
	-10.00 to 10.00 V			
DC current	$\begin{aligned} & 4.00 \text { to } 20.00 \mathrm{~mA} / \\ & 0.00 \text { to } 20.00 \mathrm{~mA} \end{aligned}$	$\pm 0.1 \%$ FS ± 1 digit max. (at $23 \pm 3^{\circ} \mathrm{C}$)	60Ω	

No-voltage Contact/Open Collector Inputs

Input	Measuring range	Measuring accuracy (at $\left.23 \pm 5^{\circ} \mathbf{C}\right)$	Displayable range
No-voltage contact (30 Hz max.) with ON/OFF pulse width of 16 ms min.	0.05 to 30.00 HZ	$\pm 0.1 \% \mathrm{FS} \pm 1$ digit max.	-19999 to 99999 (with scaling function)
Open collector (5 kHz max.) with ON/OFF pulse width of $90 \mu \mathrm{~s} \mathrm{min}$.	0.1 to 5000.0 HZ		

Digital Data Display (By RS-485 Communication)

Displayable range	-19999 to 99999

■ Characteristics

Input signal	Process voltage (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$) Process current (4 to $20 \mathrm{~mA}, 0$ to 20 mA)	No-voltage contact (30 Hz max. with ON/OFF pulse width of 16 ms min .) Open collector (5 kHz max. with ON/OFF pulse width of $90 \mu \mathrm{~s}$ min.)	Digital data display (by RS-485 communication)
A/D conversion	Double integral method 14 bit resolution	---	
Sampling period	250 ms	---	
Display refresh period	Sampling period (sampling times multiplied by number of averaging times if average processing is selected.)		
Pulse measurement method	---	Periodic measurement	---
Connectable Sensors	---	ON residual voltage: 2.5 V max. OFF leakage current: 0.1 mA max. Load current: Must have a s Must be able 5 mA max.	witching capacity of 15 mA min. reliably switch load currents of
Max. displayed digits	5 digits (-19999 to 99999)		
Display	7-segment digital display, character height: 7.0 mm		
Polarity display	"-" is displayed automatically with a negative input signal.		
Zero display	Leading zeros are not displayed.		
Scaling function	Programmable with front-panel key inputs (range of display: -19999 to 99999). The decimal point position can be set as desired.		
External controls (see note 1)	HOLD: (Measurement value held) ZERO: (Forced-zero)	---	HOLD: (Measurement value held) ZERO: (Forced-zero)
Hysteresis setting	Programmable with front-panel key inputs (0001 to 9999).		
Other functions	Programmable Color Display Selectable output operating action Teaching set values Average processing (simple average) Lockout configuration Communications writing control (communications output models only)		
	Forced-zero set with front panel keys Control inputs (HOLD/ZERO) selection via front panel keys Field calibration	Startup compensation time (0.00 to 99.9 s) Auto-zero time (0.0 to 19.9 s)	Forced-zero set with front panel keys Control inputs (HOLD/ZERO) selection via front panel keys
Output	Relays: 2 SPST-NO Transistors: 3 NPN open collector 3 PNP open collector		---
	Combinations: Communications output (RS-485) + relay outputs (2 SPST-NO); Communications output (RS-485) + transistor outputs (3 NPN open collector); Communications output (RS-485) + transistor outputs (3 PNP open collector)		
Communications	Communications function: RS-485		
Delay in comparative outputs (transistor outputs)	750 ms max.		
Enclosure ratings	Front panel: NEMA4X for indoor use (equivalent to IP66) Rear case: IEC standard IP20 Terminals: IEC standard IP20		
Memory protection	Non-volatile memory (EEPROM) (possible to rewrite 100,000 times)		

Note: 1. The minimum input time for control signals is 80 ms .
2. Refer to N102 Operation Manual for more details.

Nomenclature

Name		Functions
1. Main display		Displays process values, parameters, and set values.
2. Status indicators	OUT1	Lit when output 1 is ON.
	OUT2	Lit when output 2 is ON.
	SV	Lit when a set value is being displayed or changed.
	T	Lit when the teaching function is enabled. Flashes when the K3GN is in teaching operation. Lit when a calibration value is being displayed during user calibration. Flashes while reading a calibration value.
	ZERO	Lit while the forced-zero function is activated.
	HOLD	Lit when HOLD input is ON.
	CMW	Lit when communications writing is "enabled" and is out when it is "disabled."
3. Level indicator		Displays the current level that the K3GN is in. (See below for details.)
4. Level Key		Used to change the level.
5. Mode Key		Used to allow the Main display to indicate parameters sequentially.
6. Shift Key		Used to enable that set value to be changed. When changing a set value, this key is used to move along the digits.
7. Up/Zero Key		Used to change a set value. Used to set or clear a forced-zero function when a measurement value is being displayed.

Level indicator	Level
Not lit	Orotect
II	Adjustment
II	Initial setting
II	Communications setting
II	Advanced function setting
II	User calibration

Operation

- Main Functions

Input Types and Ranges

Input type (setting parameter)	Function	Input range (setting parameters)	Setting range
Analog input (RпRULI)	Selects DC voltage/current signal input.	4 to $20 \mathrm{~mA} / 0$ to 20 mA (4200)	Displayable from -19999 to 99999 with scaling function. The position of the decimal point can be set as desired.
		1 to $5 \mathrm{~V} / 0$ to 5 V ((國)	
		$\pm 5 \mathrm{~V}$ (5)	
		\pm 10 V (12$)$	
Pulse input (PULSE)	Selects pulse input signal.	0.05 to 30 Hz (30.	
		0.1 to $5 \mathrm{kHz}\left(5{ }^{\prime}\right)$	
Remote (rint)	Displays digital data from PLC or PC.	---	

Scaling

- Analog (Process) Inputs

The K3GN converts input signals into desired physical values.
INPUT2: Any input value
DISPLAY2: Displayed value corresponding to INPUT2
INPUT1: Any input value
DISPLAY1: Displayed value corresponding to INPUT1

- Pulse Frequency

The K3GN converts pulse signal inputs into desired units such as revolutions or rotational speeds.
The slope of the linear relationship between the input value and display value is calculated automatically when an input value and its corresponding display value are entered.
Input value: Any arbitrary input value
Display value: Desired display value corresponding to input value If scaling for pulse signals is not performed, the input frequency will be displayed.
The relationship between input, f, and display, Y , is expressed in the form $Y=f \times a$ (multiplication factor). The value of a will vary according to the display unit. For example, if the display unit is rpm, Y is given by the following:
$Y=f \times 1 / N \times 60$ (i.e., $a=1 / N \times 60$)
where N is the number of pulses per revolution. If the display unit is $\mathrm{m} / \mathrm{min}, \mathrm{Y}$ is given by the following:
$Y=f \times \pi d \times 1 / N \times 60$ (i.e., $a=\pi d \times 1 / N \times 60$)
where $\pi d=$ the wavelength (m) per revolution.

Example: When displaying the rotational speed (rpm) for a machine that generates 5 pulse signals per revolution, Y is given by the following:
$Y=f \times 1 / 5 \times 60$,
so if $f=1$, then $Y=12$. Therefore, input 1 for LnP^{-p} and 12 for $d 5$.

Average Processing

The average processing function stabilizes displayed values by averaging the corresponding input signals that fluctuate dynamically.

Hysteresis

The hysteresis of comparative outputs can be set to prevent the chattering of relay or transistor outputs.

Upper limit (high acting)

Startup Compensation Time (Pulse Input Only)

The startup compensation time parameter keeps the measurement operation from sending an unnecessary output corresponding to instantaneous, fluctuating input from the moment the K3GN is turned ON until the end of the preset period.
The compensation time can be set in a range from 0.0 to 99.9 seconds as the waiting time until the devices subject to measurement become stable after the startup of the power supply.

Changing the Display Color

The display can be programmed to change color when an output turns ON. In an example, the K3GN can be programmed to display Green for normal, and Red for errors. The color can be set to change from either green to red or red to green when output turns ON. K3GN can also be programmed to display only one unchanging color: Red or Green.

Teaching

An actual measured value as a set value without any front panel key input can be set with the teaching function. Teaching is useful for making settings while checking the operation status of K3GN.

Forced-zero Function

It is possible to shift the zero point to a desired value (such as might be required when adjusting reference values) with one touch of the Up/Zero Key on the front panel.

Configurable Output Operating Action

Output 1 and output 2 can be set to operate in one of the 3 following modes:

- Upper limit (High Acting):

The output is turned ON when the measured value is greater than its set value.

- Lower limit (Low Acting):

The output is turned ON when the measured value is less than its set value.

- Upper and lower limits (Outside band Acting):

An upper limit (H set value) and lower limit (L set value) can be set independently.
The output is turned ON when the measured value is greater than upper-limit set value or less than the lower-limit set value.
Only transistor outputs have a PASS output which is output when both OUT1 and OUT2 are OFF.

Upper Limit (High Acting)

Lower Limit (Low Acting)

Upper and Lower Limits
(Outside Band Acting)

The three types of output operations shown above can be combined as desired. The following are examples of possible combinations.

Upper Limit 2-stage Output

Threshold Output

■ External Connections

Terminal Arrangement

Input terminals

Terminal No.	Name	Description
(1)-(2)	Operation power	Connect the operation power supply.
(3)-(2)	Event input or pulse/contact input	$\begin{array}{l}\text { Operates as follows depending on } \\ \text { parameter setting: } \\ \text { - } \\ \text { Holds process value. } \\ \text { - }\end{array}$
Calibrate the process value to zero and		
clear the forced-zero function.		
Pulse or contact input.		

- Input Circuits

Analog Input (DC Voltage/Current)

Pulse Input/Control Event Input (HOLD/ZERO)
NPN Input

- Output Circuits

Contact Output

Transistor Output (NPN output)

(PNP output)

■ Block Diagram

Levels

"Level" refers to a grouping of parameters. The following table lists the operations that are possible in each of the levels, and how to move between levels. There are some parameters that are not displayed for certain models.

Level name	Function	Measurement
Protect	Setting lockouts.	Continue
Operation	Displaying process values, setting/clearing forced-zero function, and setting OUT $1 / 2$ set values.	Continue
Adjustment	Setting communications writing control.	Continue
Initial setting	Making initial settings of input type, scaling, output operating action, and other parameters.	Stopped
Communications setting	Setting baud rate, word length, and other communications data.	Stopped
Advanced function setting	Setting average processing, display color settings, and other advanced function parameters.	Stopped
Calibration	Setting user calibration of the inputs.	Stopped

Note: The move to protection level time can be set in the advanced function setting level.

- Parameters

Note: 1. There are some parameters that are not displayed for certain models.
2. The K3GN will stop measurement if the level is changed to the initial setting level, the advanced function setting level, the communications setting level, or the calibration level.
3. If the input range is changed, some parameters are set to default values. Therefore, set the input range first.
4. Settings displayed in reverse black/white are initial settings.

- Prohibits menu display, writing, etc., for operation level and adjustment level.
- Prohibits access to menu display, initial setting level, communications setting level, and advanced function setting level.
- Prohibits setting changes using front panel keys.
- Prohibits use of the forced-zero function using front panel keys.

Operation/Adjustment Lockouts

Prohibits key operations for operation level and adjustment level.

Setting	Operation level		Moving to adjustment level	
	Process value display	Set value display	Allowed	
0	Allowed	Allowed	Allowed	
1	Allowed	Prohibited		
2	Allowed	Prohibited	Prohibited	

- Initial setting is 0 .
- When the set value is 0 (the initial setting), protection is not set.

Setting Change Lockout

Prohibits setting changes.

Setting	Meaning
OFF	Setting changes using front panel keys allowed (i.e., it is possible to move to the state where changes to settings can be made).
ON	Setting changes using front panel keys prohibited (i.e., it is not possible to move to the state where changes to settings can be made).

- The initial setting is OFF.

Note: Changes to protection level parameters, moving to advanced function setting level, and moving to calibration level are all allowed.

Initial Setting/Communications Lockouts

Prohibits moving to the initial setting level, the communications setting level, and the advanced function setting level.

Setting	Moving to initial setting level	Moving to communications setting level
0	Allowed (message for moving to advanced function setting level displayed)	Allowed
1	Allowed (message for moving to advanced function setting level not displayed)	Allowed
2	Prohibited	Prohibited

- The initial setting is 1 .

Forced-zero shift Lockout

Prohibits the setting or clearing of a forced-zero using the front panel key.

Setting	Meaning
OFF	Executing and clearing of forced-zero allowed.
ON	Executing and clearing of forced-zero prohibited.

- The initial setting is OFF.

■ Initial Settings

Press the Level Key \square for 3 s min. to move to the initial setting level.

Select the input type and specify the analog input range or pulse frequency input range.
Set the scaling values and specify output operating action as required.

'With communications output models, press the Level Key \square for ', less than 1 s to move to the communications setting level.
'After making communications settings, press the Level Key \square for less than 1 s to move to the initial setting level.

Move to the advanced function setting level and make settings for average processing, HOLD/ZERO selection, hysteresis values, auto-zero time, startup compensation time, display color programming, and other advanced function parameters as required.

Press the Level Key \square for less than 1 s min. to return to the operation level.

Specify set value of OUT 1 and 2.

■ Application as a Process Meter

The initial settings required when using the K3GN a process meter are explained below using the following example．

Setting Example

Inputs in the range 1 to 5 V are scaled to the range 0 to 100.0 kg and displayed．If the measurement value goes over 70.0 kg ，
output 1 turns ON．If the measurement value goes below 50.0 kg ， output 2 turns ON．

Application as a Tachometer

The initial settings required when using the K3GN as a tachometer are explained below using the following example．

Setting Example

The speed of a conveyor belt is displayed in $\mathrm{m} / \mathrm{min}$ units．For every revolution of the shaft， 4 pulses are output．the diameter of the axis of rotation is 12 cm ．If the Rotational speed goes over $10.500 \mathrm{~m} / \mathrm{min}$ ， output 1 turns ON．If the speed goes below $9.500 \mathrm{~m} / \mathrm{min}$ ，output 2 turns ON．

Deciding the Scaling Value

Rotational speed（ $\mathrm{m} / \mathrm{min}$ ）$=\pi \times$ Diameter $(\mathrm{m}) \times$ Revolutions per minute（rpm）
Revolutions per minute（rpm）＝Input frequency（Hz）\div Number of pulses per revolution $\times 60$
Applying the appropriate values to these 2 equations gives：Speed $(\mathrm{m} / \mathrm{min})=5.654866 \ldots \times$ Input frequency (Hz)
Multiply by 1,000 to display the first 3 digits to the right of the decimal point．
Speed $(\mathrm{m} / \mathrm{min})=5654.866 \ldots \times$ Input frequency (Hz)

To limit inaccuracies due to scaling，select a round number （e．g．，10）as the input value and select a display value of as many digits as possible．In this example，scaling is performed so that an input value of 10 gives a displayed value of 56549.

Initial Setting Procedure

1．Check the wiring and turn ON the power．
2．Set analog input as the input type．
If a measurement value is displayed（operation level），move to the initial setting level by holding down the Level Key for 3 s min．

3．Set the analog range to 1 to 5 V ．
Set parameter r－RnLE to 记5．
4．Set the scaling values．
Set parameter Lirl it to
Set parameter $\quad 15 P$ ． ito 0 ．
Set parameter $\mathrm{EnP} P$ to 5.0000.
Set parameter $\quad 15 P .2$ to 10010.
5．Set the position of the decimal point．
Set parameter diP to oooo．o．
6．Operating action for OUT1 and OUT2 set values．
Set parameter àut i．t to HL^{-}．
Set parameter 就己 L to $L \bar{L}$ ．
7．Set OUT1 set value to 70.0 and OUT2 set value to 50.0 ． If an initial setting level parameter is displayed，press the Level Key for 1 s min．to return to the operation level．
Set parameter $\overline{\text { out }}$ i to 710.
Set parameter bute to 50．0．
8．Start actual operation．

Initial Setting Procedure

1．Check the wiring and turn ON the power．

2．Set pulse input as the input type．

If a measurement value is displayed（operation level），move to the initial setting level by holding down the Level Key for 3 s min．
Set parameter $\bar{I} n \mathrm{E} t$ to $P H L S E$ ．
3．Set the pulse frequency to 30 Hz ．
The input pulse frequency for the application is approximately 2 Hz and so can be assumed not to exceed 30 Hz ．Set parameter P居F－E to 30 ．
4．Set the scaling values．
Set parameter LnP to 10.
Set parameter d5P to 55549 ．
5．Set the decimal point．
Set parameter dip to oo． 000 ．
6．Operating action for OUT1 and OUT2 set values．
Set parameter but i． L to H^{-}．
Set parameter $\bar{\alpha} \| E \cdot L$ to $L \bar{L}$ ．
7．Set OUT1 set value to 10.500 and OUT2 set value to 9.500 ． If an initial setting level parameter is displayed，press the Level Key for 1 s min．to return to the operation level．
Set parameter $\overline{\text { att }}$＇to 10.500.

8．Start actual operation．

